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1.     Introduction   

 
 In this work the theorems of existence and uniqueness of the solution of the 

convolution type Volterra integral equation of the 1st kind are proved. Necessary and 

sufficient conditions are formulated for the solution that belongs to class of decomposable 

in the Fourier series continuous functions whose coefficients tend to zero as 

𝑘−(1+𝛼)   (𝛼 > 0). Based on the proofs, a new method for numerical solution of this 

integral equation is proposed.  

Usually the problem of existence of the solution of the Volterra integral equation of 

the 1st kind is solved with the help of the converting integral equation of the 1st kind to the 

integral equation of the 2nd kind. The existence and uniqueness of the solution of the 

Volterra integral equation of the 2nd kind provides the existence and uniqueness of the 

solution of the Volterra integral equation of the 1st kind. If the conversion to the integral 

equation of the 2nd kind is impossible, then the question of existence of the solution 

remains open. In some special cases, there are formulas for the solution of the equation of 

the 1st kind. For example, the case of the degenerate kernel (kernel K(x, t) can be 

represented in the form 𝑎1(𝑥)𝑏1(𝑡) + ⋯ + 𝑎𝑛(𝑥)𝑏𝑛(𝑡), the Abel equation, kernel with 

logarithmic singularity, etc. These and other examples can be found here [1, p. 28-44]. In 

the general case for the solution of the convolution type Volterra integral equation of the 

1st kind the Titchmarsh theorem is known [5]: if the solution exists and the kernel 

satisfies the known condition, then the solution is unique. 

A fair complete the information about theory and practice of solving integral 

equations of various types can be found in the handbooks [1, 3] and in the Internet page 

[4]. 
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2. Main result 

 

Consider the convolution type Volterra integral equation of the 1st kind  

             ∫ 𝐾(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠 = 𝑔(𝑡)                                     

𝑡

0

   (1) 

It is assumed that the right side of 𝑔(𝑡) satisfies the condition 𝑔(0) = 0.  
We do not assume that any of the conditions, allowing one to reduce the 

integral equation (1) to the integral Volterra equation of 2nd kind, exist. On the 

contrary, the case does not allow one to do it (for example, 𝐾(𝑛)(0) = 0  (𝑛 =
0,1,2, … )), is possible. 

Consider the space 𝐹𝛽[0, 𝑇] of continuous functions 𝑓(𝑡) on the interval 

[0, 𝑇], which can be expanded in a Fourier series 

𝑓(𝑡) = 𝑏0 + ∑(𝑎𝑘𝑠𝑖𝑛(𝜔𝑘𝑡) + 𝑏𝑘𝑐𝑜𝑠(𝜔𝑘𝑡)),        𝜔𝑘 = 2𝜋𝑘 𝑇 ,      (2) ⁄

∞

𝑘=1

  

here |𝑎𝑘| ≤ 𝐴𝑘−𝛽 and |𝑏𝑘| ≤ 𝐵𝑘−𝛽  (A and B are some nonnegative constants). 

Let 𝒪0
𝜀 be a punctured ε-neighborhood of the point  𝑡 = 0. 

Theorem 1. Let function 𝐾(𝑡) ≢ 0 be a piecewise continuous function on the 

interval [0, 𝑇] and |𝐾(𝑡)| ≤ 𝑚0. For the existence of the solution 𝑓(𝑡) ∈
𝐹1+𝛼[0, 𝑇]   (𝛼 > 0) of the integral equation (1) it is necessary and sufficient if 

the function 𝑔(𝑡) on the interval [0, 𝑇]  can be represented in the form 

𝑔(𝑡) = 𝑏0𝑔0(𝑡) + ∑(𝑎𝑘𝑔𝑘(𝑡) + 𝑏𝑘𝑔𝑘
′ (𝑡)),                                (3)  

∞

𝑘=1

 

where 

1. function 𝑔0(𝑡)  has the form 

𝑔0(𝑡) = ∫ 𝐾(𝑠)𝑑𝑠

𝑡

0

 ,                                           (4) 

2. functions 𝑔𝑘(𝑡)     (𝑘 = 1,2, … )  solve the problems 

                      𝑔𝑘
′′(𝑡) + 𝜔𝑘

2(𝑡) = 𝐾(𝑡) ,    𝑔𝑘(0) = 0 ,   𝑔𝑘
′ (0) = 0 ;                 (5) 

3.  |𝑎𝑘| ≤ 𝐴𝑘−𝛼 and  |𝑏𝑘| ≤ 𝐵𝑘−(1+𝛼) and 𝐴 > 0, 𝐵 > 0  and 𝑏0 are some 

constants. 

The solution has the form 

𝑓(𝑡) = 𝑏0 + ∑ (
𝑎𝑘

𝜔𝑘
𝑠𝑖𝑛(𝜔𝑘𝑡) + 𝑏𝑘𝑐𝑜𝑠(𝜔𝑘𝑡))

∞

𝑘=1

.                     (6) 

Proof. Necessity. Let 𝑓(𝑡) ∈ 𝐹1+𝛼[0, 𝑇]  be the solution of the integral equation 

(1) where 𝛼 > 0. Then due to the uniform convergence of the series (2) the 

function 𝑔(𝑡) can be represented in the form 

𝑔(𝑡) = 𝑏̃0𝑔0(𝑡) +      
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+ ∑ (𝑎̃𝑘 ∫ 𝐾(𝑠)𝑠𝑖𝑛(𝜔𝑘(𝑡 − 𝑠))𝑑𝑠 +

𝑡

0

𝑏̃𝑘 ∫ 𝐾(𝑠)𝑐𝑜𝑠(𝜔𝑘(𝑡 − 𝑠))𝑑𝑠

𝑡

0

)

∞

𝑘=1

. 

It easy to see that the function 

𝑔𝑘(𝑡) =
1

𝜔𝑘
∫ 𝐾(𝑠)𝑠𝑖𝑛(𝜔𝑘(𝑡 − 𝑠))𝑑𝑠                                     (7)

𝑡

0

 

is a solution of the problem (5) and 𝑔𝑘(𝑡) ∈ 𝐶1[0, 𝑇]. 
Thus the function 𝑔(𝑡) has the form (3) and 𝑏0 = 𝑏̃0 , 𝑎𝑘 = 𝑎̃𝑘𝜔𝑘 and 

𝑏𝑘 = 𝑏̃𝑘   (𝑘 = 1 ,2, … ). Due to |𝐾(𝑡)| ≤ 𝑚0, this series converges uniformly, 

hence it converges to the continuous function. Due to boundary conditions (5) 

𝑔(0) = 0. 

Sufficiency. Let function 𝑔(𝑡) have the form (3). Solution of the problem (5) can 

be represented in the form (7). It easy to see that the equality 

∫ 𝐾(𝑠)

𝑡

0

[𝑏0 + ∑ (
𝑎𝑘

𝜔𝑘
𝑠𝑖𝑛(𝜔𝑘(𝑡 − 𝑠)) + 𝑏𝑘𝑐𝑜𝑠(𝜔𝑘(𝑡 − 𝑠)))

∞

𝑘=1

] 𝑑𝑠 = 𝑔(𝑡) 

holds. If |𝑎𝑘 𝜔𝑘⁄ | ≤ 2𝜋𝑇−1𝐴𝑘−(1+𝛼) and |𝑏𝑘| ≤ 𝐵𝑘−(1+𝛼) then the series in the 

square brackets converges uniformly, hence it converges to the continuous 

function 𝑓(𝑡) and 𝑓(𝑡)  ∈ F1+α[0, 𝑇].  
Theorem is proved. 

If there is such 𝜀 > 0 that 𝐾(𝑡) ≠ 0 for 𝑡 ∈ 𝒪0
𝜀, then the uniqueness of the 

solution of the integral equation (1) follows from the Titchmarsh theorem [5] (see 

also [6, p.49]). 

Theorem 2. Let the functions 𝑔1(𝑡) and 𝑔2(𝑡) can be represented in the form 

𝑔𝑖(𝑡) = 𝑏0
𝑖 𝑔0(𝑡) + ∑ (𝑎𝑘

𝑖 𝑔𝑘(𝑡) + 𝑏𝑘
𝑖 𝑔𝑘

′ (𝑡))

∞

𝑘=1

,     𝑖 = 1,2,              (8) 

where  𝑏0
𝑖  , 𝑎𝑘

𝑖  and 𝑏𝑘
𝑖   (𝑘 = 1, 𝑘̅̅ ̅̅̅ , 𝑖 = 1,2) satisfy the condition 3 from Theorem 1. 

If  𝐾(𝑡) ≢ 0  

|𝑏0
1 − 𝑏0

2| ≤ 𝛿,    |𝑎𝑘
1 − 𝑎𝑘

2| ≤ 𝛿𝑘−𝛼 ,   |𝑏𝑘
1 − 𝑏𝑘

2| ≤ 𝛿𝑘−(1+𝛼) ,   𝑘 = 1,2, …     (9) 

then for the solutions  𝑓1(𝑡) and 𝑓2(𝑡) of the integral equation (1) the inequality 

                                       |𝑓1(𝑡) − 𝑓2(𝑡)| ≤ 𝐶𝛿                                   (10) 

holds, where 𝐶 = 𝐶(𝑇, 𝛼) is constant.  

Proof. First of all, it is clear that the difference 𝑔(𝑡) = 𝑔1(𝑡) − 𝑔2(𝑡) can be 

represented as (3), therefore, it corresponds to the solution 𝑓(𝑡) = 𝑓1(𝑡) − 𝑓2(𝑡)  

of the equation (1), which is represented in the form (6). 

Rating the difference 

|𝑓1(𝑡) − 𝑓2(𝑡)| = |𝑏0
1 − 𝑏0

2 + ∑ (
𝑎𝑘

1 − 𝑎𝑘
2

𝜔𝑘
sin(𝜔𝑘𝑡) + (𝑏𝑘

1 − 𝑏𝑘
2)𝑐𝑜𝑠(𝜔𝑘𝑡))

∞

𝑘=1

| ≤ 

≤ [1 + (𝑇 2𝜋 + 1⁄ ) ∑
1

𝑘1+𝛼

∞

𝑘=1

] 𝛿 = [1 + (𝑇 2𝜋 + 1⁄ )𝜁(1 + 𝛼)]𝛿 ≡ 𝐶(𝑇, 𝛼)𝛿 ,  

Where 𝜁(•) is the Riemann ζ-function, we get the proof of the theorem.  
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Theorem is proved. 

Note that from Theorem 2 it follows the uniqueness and stability of the 

solution of the integral equation (1) in 𝐹𝛽[0, 𝑇] without the assumption that 

 𝐾(𝑡) ≠ 0 for 𝑡 ∈ 𝑄0
𝜀. 

 
3.   Numerical method for solving the integral equation 

 

The proved theorem enables us to offer a numerical method for solving the 

convolution type Volterra integral equation of the 1st kind, which is not found in the 

reference literature [1-4]. Let solution of the integral equation (1) should be found on the 

interval [0, 𝑇]. As a rule, the right side of the equation is known with some error, i.e., 

𝑔𝛿(𝑡) is given.  

Let 𝑔0(𝑡) and 𝑔𝑘(𝑡) be calculated (𝑘 = 1, 𝑁̅̅ ̅̅ ̅)  (see (4)-(5)). We need to solve the 

following minimization problem: 

                   𝐽[𝑎1, … , 𝑎𝑁 , 𝑏0, 𝑏1, … , 𝑏𝑁 ] ≡ ∫ 𝑛2(𝑡)𝑑𝑡

𝑇

0

→ 𝑚𝑖𝑛,                   (11) 

where 

𝑛(𝑡) = 𝑏0𝑔0(𝑡) + ∑(𝑎𝑘𝑔𝑘(𝑡) + 𝑏𝑘𝑔𝑘
′ (𝑡)) − 𝑔𝛿(𝑡)

𝑁

𝑘=1

 . 

The functional (11) is quadratic and the conjugate gradient method can be used 

[7] to its minimization. 

The efficiency of the proposed method can be shown an example, where 

𝐾(𝑡) = 𝑒−1 𝑡⁄  ,   𝑓(𝑡) = 3 ∙ 10−5𝑡(𝑇 − 𝑡)(𝑇 2⁄ − 𝑡) + 2𝑠𝑖𝑛(𝑡 (𝑇 − 𝑡) 100⁄ ) + 

+9(1 − 𝑐𝑜𝑠 (𝑡(𝑇 − 𝑡)) 1000⁄ ) ,    𝑇 = 200(𝑠) , 
and function 𝑔(𝑡) is calculated with the help of the calculation of the integral (1), after 

that random error is added to it: 𝑔𝛿(𝑡) = 𝑔(𝑡) + 𝜉(𝑡)
𝑃

100
 , where ξ  is a random value 

on [−1,1] and P is a percentage of the error. The function 𝑓(𝑡) is chosen in this form 

because it has a smooth trend component and a small oscillations along its entire length. 

The result of solving is shown in the figure. 

 

 
 

Figure. Result of solving the integral equation (1).  

Smooth line is exact solution, broken line is the result of the numerical solution, 𝑃 = 10%. 
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